
Dual-Radiator RICH

Marco Contalbrigo – INFN Ferrara

EIC eRD102 Meeting - 7nd September 2021

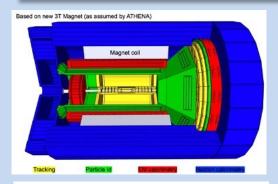
Dual Radiator RICH in EIC Hadron-endcap

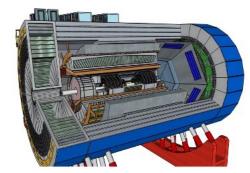
dRICH: effective solution, part of reference detector

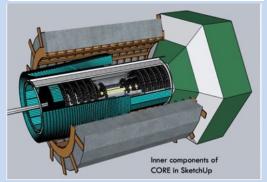
Radiators: Aerogel (n_{AERO} ~1.02) + Gas (n_{C2F6} ~1.0008)

Detector: 0.5 m²/sector, 3x3 mm² pixel

Single-photon detection in ~1T magnetic field

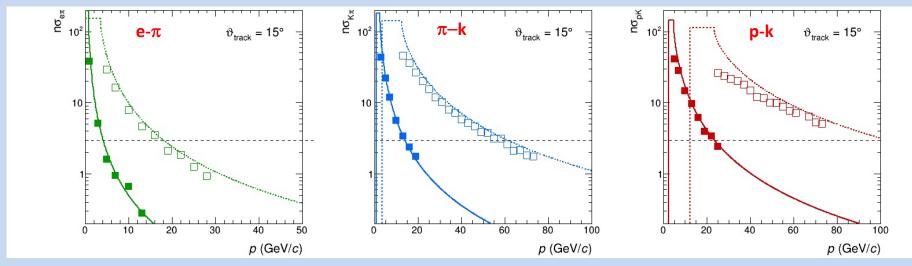

Outside acceptance, reduced constraints


→ best candidate for SiPM option

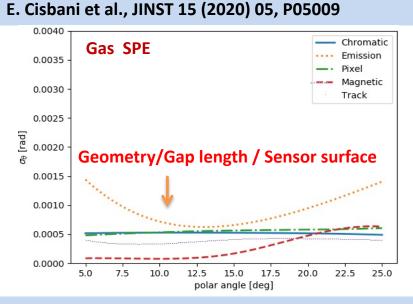

- Polar angle: 5-25 deg

- Momentum: 3-60 GeV/c

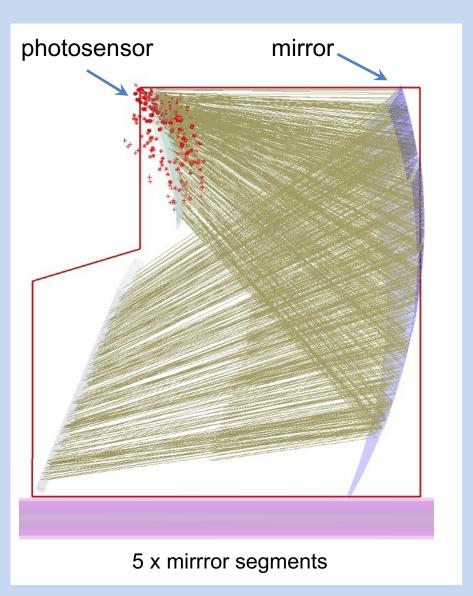
- Magnet: 3T Solenoid

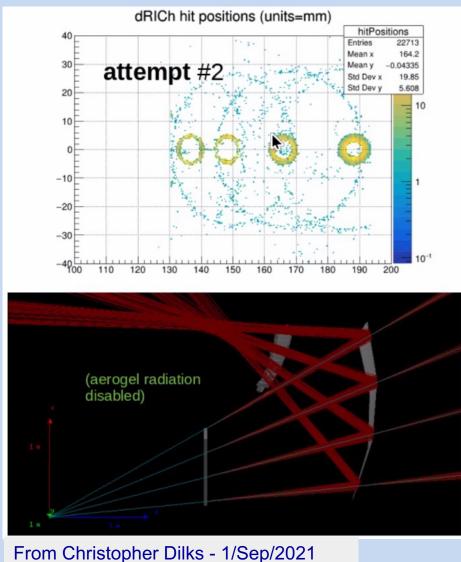


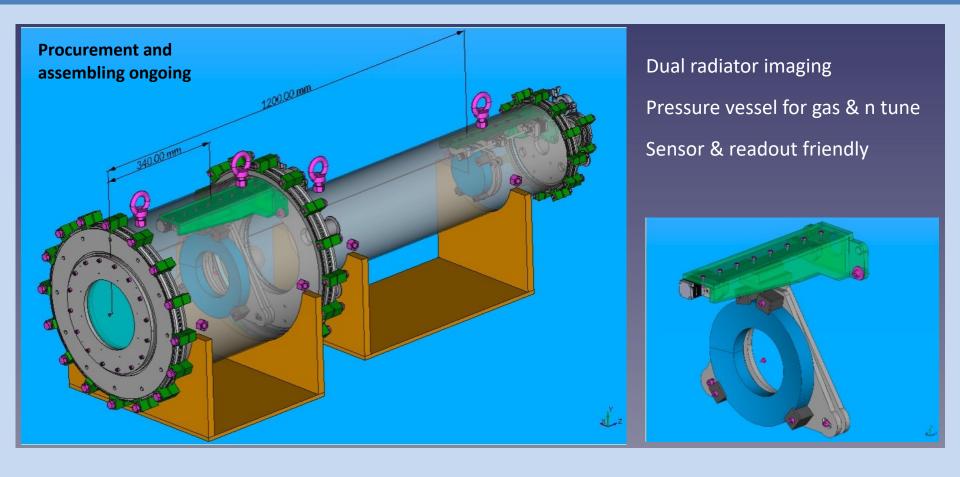
dRICH Feasibility Study


Compact and cost-effective solution for continuous momentum coverage (3-60 GeV/c) Strong interest in the dRICH electron-pion separation capability

Studied with full Geant4 simulation, with Bayesian optimization and analytic parameterizations

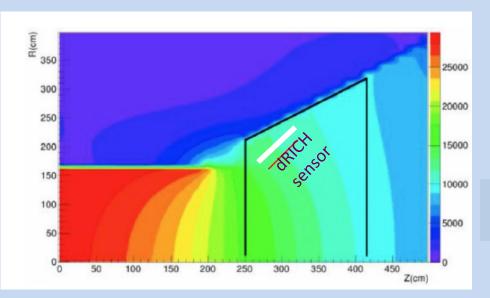

0.0040 Chromatic **Aerogel SPE** Emission 0.0035 Magnetic 0.0030 Track 0.0025 0.0020 **Refractive index / UV filters** 0.0015 0.0010 0.0005 0.0000 7.5 10.0 15.0 20.0 polar angle [deg]

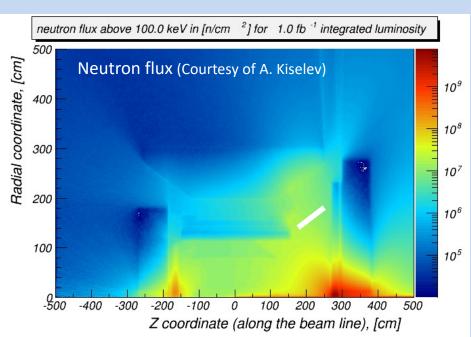

L. Barion et al., JINST 15 (2020) 02, C02040


dRICH in ATHENA +....

Firsts attempts to optimize optics in ATHENA with dRICh full simulation framework

dRICH Prototype


Goals:


- Study dual radiator performance and interplay
- Study specifications and alternatives for optical components
- Test alternate single-photon detection systems
- * First test-beams in September and October '21 at CERN (in synergy with ALICE at PS T10)

dRICH Prototype

EIC Detector Challenge II

High Magnetic Field

~ 1 T order of magnitude, varying orientation

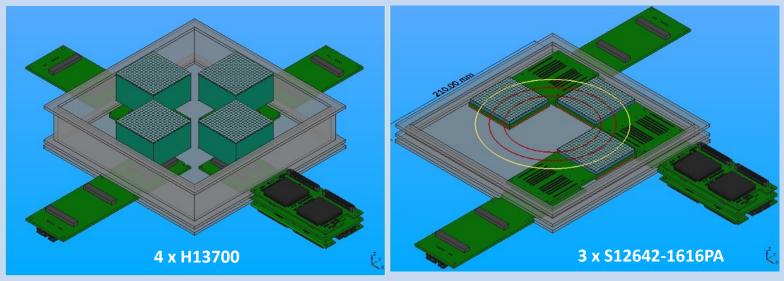
SiPM: PET study up to 7 T 10.1109/NSSMIC.2008.4774097

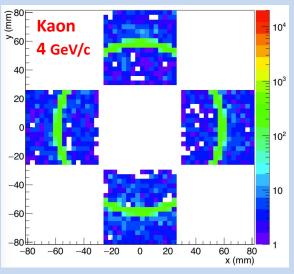
dRICH sensor location relaxes requirements on neutron dose and material budget

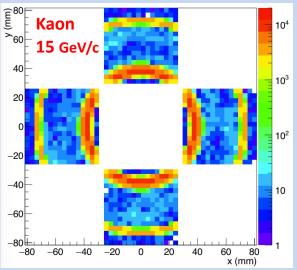
Neutron Fluence

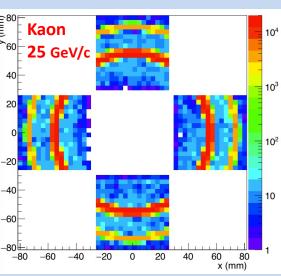
Moderate except for very forward regions

Reference value. ~ 10 ¹¹ n_{eq}/cm²


for several years at max lumi (10³⁴)

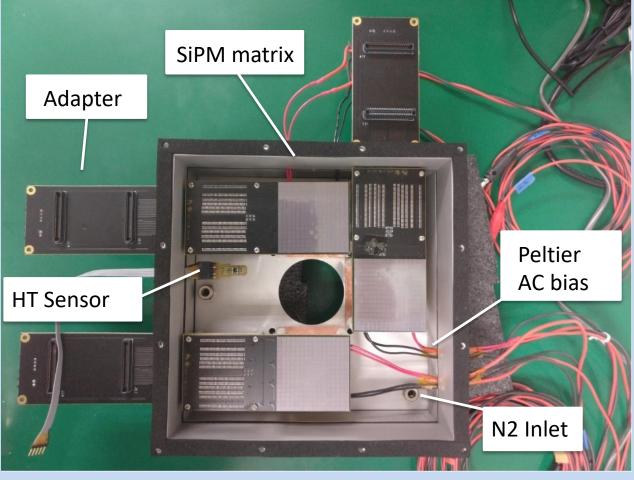

SiPM: radiation mitigation for SPE actively studied till 10¹¹ n_{eq}/cm² and above 10.1016/j.nima.2019.01.013 10.1016/j.nima.2018.10.191


Assumed: indepednent readout based on SiPM and MAROC electronics


dRICH Prototype Imaging

House the same principles and readout units used for EIC eRD14 test-beams Compatible with H13700/S12642-1616PA + CLAS12 RICH MAROC front-end Allows to study the working principles and optical performance of the components

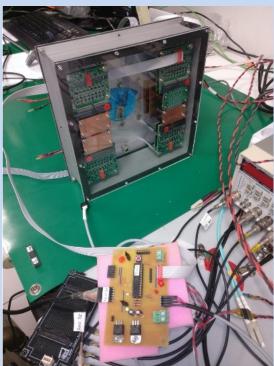
dRICH Detector Box

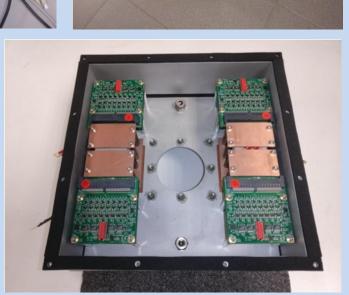

3 versions: Detector box for S12642-1616PA matrices of large area (5x5 cm²)

Detector box for H13700 multi-anode PMTs (reference dertector)

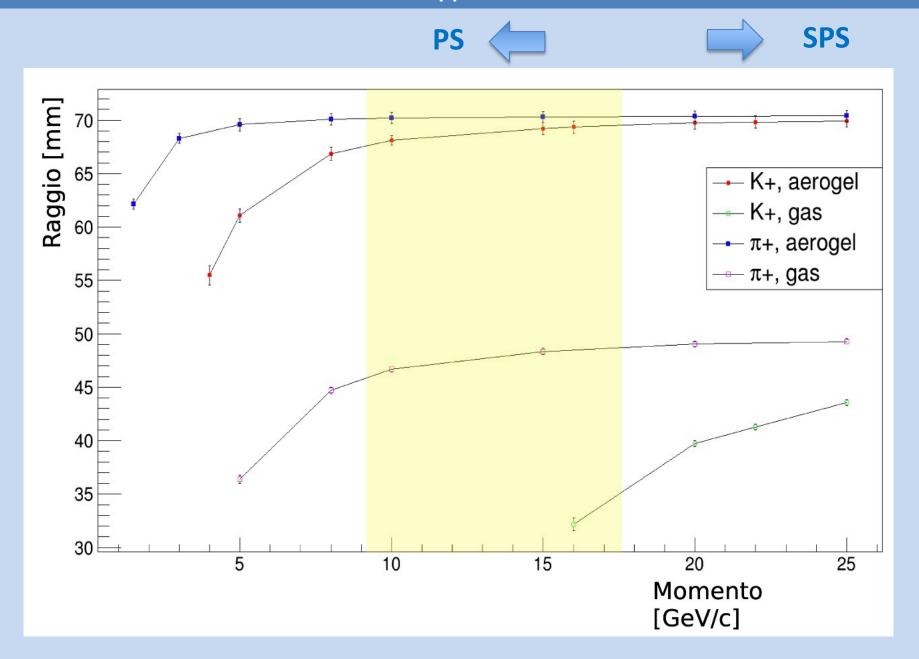
Detector box for irradiated SiPM carriers

Obsolete SiPM sensors out of market




Ancillary Systems

Vacuum test


Cooling system

Detector box for irradiated SiPM

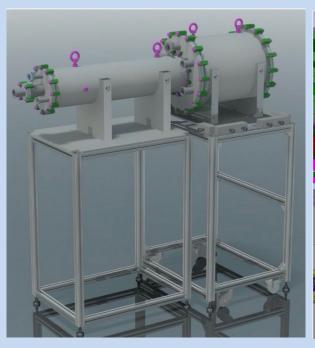
dRICH Prototype Simulation

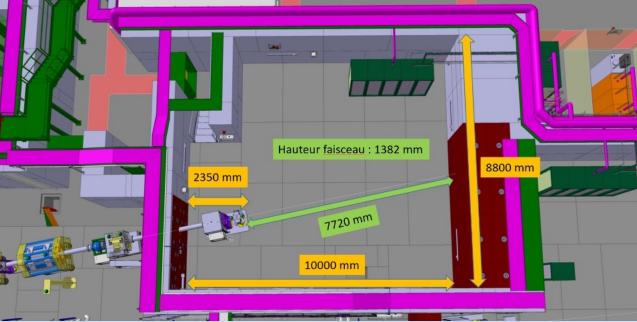
CERN Beam Tests

Spetember '21 @ SPS H6

Meson beam up to 15 GeV/c

October '21 @ PS T10


Meson beam from 20 to 60 GeV/c


Goals: Commissioning of dRICH prototype, initial assessment of the dRICH Concept

Asses aerogel (and gas) optical performance

Assess SiPM usage in realistic experimental conditions

Synergy with ALICE for aerogel (Japanese/Russian) and SiPM + ALCOR/ARCADIA readout tests

dRICH Key Hardware Components

Component	Function	Specs/Requirements	Critical Issues / Comments		
Mechanics	Support all other components and services Keep in position and aligned	Large volume gas and light tightness; alignment of components	Technically demanding but feasible; no major challenges expected		
Optics (Mirrors)	Focus (expecially for gas) and deflect photons out of particle acceptance and reduce sensor surface	sub-mrad precision reflectivity ≥ 90% low material budget	Spherical mirrors technology of CLAS12 suitable (optical fiber and/or glass skin); similar geometry; Development for cost reduction		
Aerogel Radiator	Cover Low Mom. Range between TOF and Gas	≥3σ π-K separation up to Gas region (~13 GeV)	Procurement: currently 1 active provider (2 main producers + 1 potential) Long term stability assessment in conjunction with gas		
Gas Radiator	Cover High Mom. Range above Aerogel	≥3σ π-K separation up to ~50 GeV and overlap to aerogel	Greenhouse gas: potential procurement issue Search for alternatives		
Photon Detector	Single photon spatial detection	Magnetic field tolerant and radiation hardness; ~ few mm spatial resolution	MCP-PMT is likely doable, but expensive. LAPPD may represent an alternative. R&D on SiPM: a promising, quicky improving, wordwide pursued, and cheap technology.		
Electronics	Amplify and shape single photon analog signal, convert to digital, transfer to DAQ nodes	Low noise Time res. ~ 0.5 ns μs signal latency	MAROC3 based readout available for prototyping; final choice will depend on sensor. ASIC development for optimised streaming readout (discrimination vs sampling)		

Radiators

Choice is based on EIC requirements, (current design is aerogel n=1.02, gas n=1.0008), but needs validation and could be influenced by market availability and mass production quality.

Aerogel

Russia: Budker Institute of Novosibirsk (RAS Siberian branch)

pros: largest volume (bricks)

highest transparency at large refractive index (n=1.05)

experience from AMS, CLAS12, LHCb

cons: hygroscopic

essentially handmade

Japan: Aerogel Factory Co. (spinoff from Chiba University)

pros: hydrophobic

with industrial partners experience from BELLE-II

cons: to be validated for massive production

USA: ASPEN (collaborating with CUA)

pros: industrial producer

cons: to be validated for transparency

Gas

Procurement issue reported (right now: Nippon gases)

 C_2F_6 1.00082

CF₄ 1.0005

C₄F₁₀ 1.0014

Delicate gas handling

greenhouse gases environmental restrictions

Alternative

Noble gases at high-P

Next Steps: Optical Components

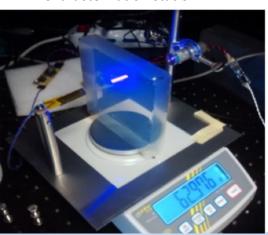
Existing facility to study detailed radiator optical properties and alternatives

Aerogel: Safe handling and characterization

(refractive index, surface planarity, forward scattering)

Budker Institute (Russia, CLAS12), Chiba University (Japan, Belle-II), Aspen (USA, R&D)

Gas: Safe handling and purging


Alternatives to greenhouse gases

Interplay between radiators: UV filters, refractive index optimization

Spectrophotometer

Characterization station

Controlled storage

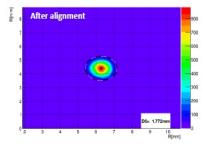
Next Steps: Optical Components

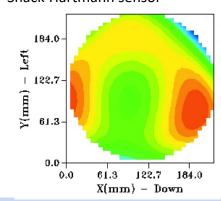
Existing facility to study detailed mirror optical properties and alternatives

Mirrors: Safe handling and characterization (surface map, radius of curvature, reflectivity)

Carbon fiber (mature) vs glass skin (cost-effective)

Mechanics: Composite materials from aeronautics technology


Stiff and light, supporting alignment


Surface Quality

Pointlike source image

Shack-Hartmann sensor

600

FY22 Targeted R&D

Goals:

Completion of a test-beam setup able to demonstrate dRICH performance

New test-beam to validate the dual-radiator approach and support the simulations

Study of dRICH basic integration into the EIC detector.

Milestones:

Initial assessment based on the first test beams (3/30/22);

Realization of a suitable detector plane for the dRICH prototype (6/30/22);

Realistic implementation of dRICH into the EIC detector (9/30/22).

dRICH Timeline

Year	Detailed tasks
2021	 Development of basic prototype design, simulation and implementation Optical components: First selection and tests Basic prototype: Basic tracking, one choice per radiator, glass mirrors, reference readout Beam Test 1: Proof of principle with reference detectors and readout, ideal beam Import dRICH simulation into the supported EIC platforms
2022	 Analysis of the first test-beam Refined prototype: refined components and readout, online reconstruction, precise tracking/alignment Beam Test 2: Performance assessment with reference and custom detectors, hadron tagged beams
2023	 R&D on cooling EIC configuration engineering and integrated PID Optical components refinement and cost reduction study (e.g. glass-skin mirror
2024	 Component alternatives and optimization Final prototype: various radiators, custom mirrors, gas system, optimized readout Beam test 3: Performance assessment with optimized components
2025	 Engineering of cooling and services Beam test 4: Contingency

Assumed funding profile k\$.

	prototype	radiators	mirror	detector	personnel	technical	travel	total
FY22	30	30	0	40	100	10	10	220
FY23	10	20	30	10	100	10	10	190
FY24	0	20	30	0	60	10	10	130

Conclusions

Ongoing effort for the development of a forward RICH detector for particle identification at EIC

Activity plan in organized following the EIC Critical-Decision timeline

Goal:

Cost-effective compact solution for hadron PID in EIC forward region in a wide kinematic range

R&D Activity on innovative aspects and space for synergy with LHC (ALICE) and other EIC eRD

Prototyping and test-beam campaigns to address crucial PID aspects at EIC (1st joined test-beam on October '21)

Optimized and alternate radiators

Aerogel of medium refractive index and high transparency, noble gas at high pressure

Novel cost-effective single-photon detector solution to be operated in high magnetic field SiPM post-irradiation characterization and imaging tests (+LAPPDs)

Readout

Alternate ToT architecture (ALCOR chip)

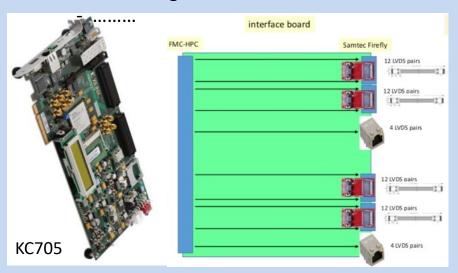
Cooling, support structure

BNL technical support is essential

Readout Electronics R&D

Custom readout solutions:

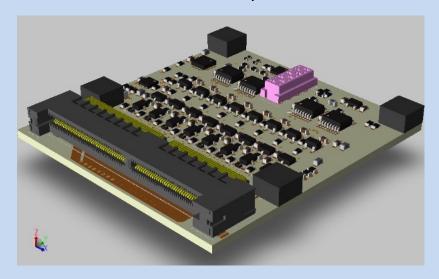
ToT readout bsed on


ALCOR (F/E) + ARCADIA (DAQ)

- > 500 kHz per channel
- > 50 ps time binning

AIDAinnova engineering run: RD_FCC - EIC_NET

Investigate:


- coupling with sensor
- discriminating and TDC logic
- timing performance
- streaming readout

ALCOR test board

SiPM carrier to ALCOR adapter board

